1 Рефлекторный принцип деят-ти НС. Рефлекс - основная форма нервной деятельности. Ответная реакция организма на раздражение из внешней или внутренней среды, осуществляющаяся при участии центральной нервной системы, называется рефлексом. Путь, по которому проходит нервный импульс от рецептора до эффектора (действующий орган), называется рефлекторной дугой. В рефлекторной дуге различают пять звеньев: - рецептор; - чувствительное волокно, проводящее возбуждение к центрам; - нервный центр, где происходит переключение возбуждения с чувствительных клеток на двигательные; - двигательное волокно, несущее нервные импульсы на периферию; - действующий орган - мышца или железа. Любое раздражение - механическое, световое, звуковое, химическое, температурное, воспринимаемое рецептером, трансформируется в нервный импульс и в таком виде по чувствительным волокнам направляется в центральную нервную систему. При помощи рецепторов организм получает информацию обо всех изменениях, происходящих во внешней среде и внутри организма. В центральной нервной системе эта информация перерабатывается, отбирается и передается на двигательные нервные клетки, которые посылают нервные импульсы к рабочим органам - мышцам, железам и вызывают тот или иной приспособительный акт - движение или секрецию. Рефлекс как приспособительная реакция организма обеспечивает тонкое, точное и совершенное уравновешивание организма с окружающей средой, а также контроль и регуляцию функций внутри организма. В этом его биологическое значение. Рефлекс является функциональной единицей нервной деятельности. 2 Классификация рефлексов. Существуют различные классификации рефлексов: по способам их вызывания, особенностям рецепторов, центральным нервным структурам их обеспечения, биологическому значению, сложности нейронной структуры рефлекторной дуги… По способу вызывания различают безусловные рефлексы (категория рефлекторных реакций, передаваемых по наследству) и условные рефлексы (рефлекторные реакции, приобретаемые на протяжении индивидуальной жизни организма). Различают экстероцептивные рефлексы — рефлекторные реакции, инициируемые раздражением многочисленных экстерорецепторов (болевые, температурные, тактильные и т. д.), интероцептивные рефлексы (рефлекторные реакции, запускаемые раздражением интероцепторов: хемо-, баро-, осморецепторов и т. д.), проприоцептивные рефлексы (рефлекторные реакции, осуществляемые в ответ на раздражение проприорецепторов мышц, сухожилий, суставных поверхностей и т. д.). В зависимости от уровня активации части мозга дифференцируют спинномозговые, бульварные, мезенцефальные, диэнцефальные, кортикальные рефлекторные реакции. По биологическому назначению рефлексы делят на пищевые, оборонительные, половые и т. д. С учетом уровня эволюционного развития, совершенствования сложности нервного субстрата, обеспечивающего соответствующую рефлекторную реакцию, физиологического значения, уровня интегративной деятельности организма выделяют шесть основных видов рефлексов, или уровней рефлекторных реакций (А. Б. Коган): Элементарные безусловные рефлексы, представлены простыми рефлекторными реакциями, осуществляемыми на уровне отдельных сегментов спинного мозга. Они имеют местное значение, вызываются локальным раздражением рецепторов данного сегмента тела и проявляются в виде локальных сегментарных сокращений поперечнополосатой мускулатуры. Элементарные безусловные рефлексы осуществляются по жестко детерминированным программам и имеют четкую определенную структурную основу в виде сегментарного аппарата спинного мозга, в результате такие рефлекторные реакции отличаются высокой степенью автоматизма и стереотипности. Функциональная роль этой категории рефлексов заключается в обеспечении простейших приспособительных реакций к внешним воздействиям местного значения, а также в приспособительных изменениях отдельных внутренних органов. Координационные безусловные рефлексы представляют собой согласованные акты локомоторной деятельности или комплексные реакции вегетативных функциональных объединений внутренних органов. Эти рефлексы также вызываются раздражением определенных групп внешних или внутренних рецепторов, однако их эффект не ограничивается локальной реакцией путем последующей активации широкого класса экстеро-, интеро- и проприорецепторов, а формирует сложные координационные акты сокращения и расслабления, возбуждения или торможения деятельности ряда внутренних органов. В физиологических механизмах реализации рефлекторных реакций этого типа значительное место занимает принцип обратной связи, обеспечиваемый соответствующими спинномозговыми структурами и осуществляющий антагонистическую, реципрокную иннервацию мышц-синергистов и антагонистов. Функциональное назначение координационных безусловных рефлексов — формирование на базе локальных элементарных безусловных рефлексов целостных, целенаправленных локомоторных актов или гомеостатических систем организма. Интегративные безусловные рефлексы представляют собой дальнейший шаг в интеграции отдельных безусловных рефлексов, осуществляющих сложные двигательные локомоторные акты организма в тесной связи с вегетативным обеспечением, формируя тем самым комплексные поведенческие акты, имеющие определенное биологическое значение. 3 Гуморальная регуляция. Представляет собой способ передачи регулирующей информации к эффекторам через жидкую внутреннюю среду организма с помощью молекул химических веществ, выделяемых клетками или специализированными тканями и органами. Этот вид регуляции жизнедеятельности может обеспечивать как относительно автономный местный обмен информацией об особенностях метаболизма и функции клеток и тканей, так и системный эфферентный канал информационной связи, находящийся в большей или меньшей зависимости от нервных процессов восприятия и переработки информации о состоянии внешней и внутренней среды. Соответственно, гуморальную регуляцию подразделяют на местную, малоспециализированную саморегуляцию, и высокоспециализирован-ную систему гормональной регуляции, обеспечивающую генерализо-ванные эффекты с помощью гормонов. Местная гуморальная регуляция (тканевая саморегуляция) практически не управляется нервной системой, тогда как система гормональной регуляции составляет часть единой нейро-гуморальной системы. Деление механизмов регуляции жизнедеятельности организма на нервные и гуморальные весьма условно и может использоваться только для аналитических целей как способ изучения. На самом деле, нервные и гуморальные механизмы регуляции неразделимы. Во-первых, информация о состоянии внешней и внутренней среды воспринимается почти всегда элементами нервной системы (рецепторы), обрабатывается в нервной системе, где может трансформироваться в сигналы исполнительных устройств либо нервной, либо гуморальной природы. Следовательно, для второго и третьего уровней системы регуляции физиологических функций управляющим устройством является, как правило, нервная система. . 5 Гомеостаз - Относительное динамическое постоянство внутренней среды и устойчивость физиологических функций организма. Основным механизмом поддержания гомеостаза является саморегуляция. Саморегуляция представляет собой такой вариант управления, при котором отклонение какой-либо физиологической функции или характеристик (констант) внутренней среды от уровня, обеспечивающего нормальную жизнедеятельность, является причиной возвращения этой функции (константы) к исходному уровню. В ходе естественного отбора живыми организмами выработаны общие механизмы управления процессами приспособления к среде обитания различной физиологической природы (эндокринные, нейрогуморальные, иммунологические и др.), направленные на обеспечение относительного постоянства внутренней среды. У человека и высших животных гомеостатические механизмы достигли совершенства. Практически все характеристики внутренней среды (константы) организма непрерывно колеблются относительно средних уровней, оптимальных для протекания устойчивого обмена веществ. Эти уровни отражают потребность клеток в необходимом количестве исходных продуктов обмена. Допустимый диапазон колебаний для разных констант различен. Незначительные отклонения одних констант могут приводить к существенным нарушениям обменных процессов — это так называемые жесткие константы. К ним относятся, например, осмотическое давление, величина водородного показателя (рН), содержание глюкозы, О2, СО2 в крови. Другие константы могут варьировать в довольно широком диапазоне без существенных нарушений физиологических функций — это так называемые пластичные константы. К их числу относят количество и соотношение форменных элементов крови, объем циркулирующей крови, скоростоседания эритроцитов. 5 Процессы саморегуляции основаны на использовании прямых и обратных связей. Прямая связь предусматривает выработку управляющих воздействий на основании информации об отклонении константы или действии возмущающих факторов. Например, раздражение холодным воздухом терморецепторов кожи приводит к увеличению процессов теплопродукции. Обратные связи заключаются в том, что выходной, регулируемый сигнал о состоянии объекта управления (константы или функции) передается на вход системы. Различают положительные и отрицательные обратные связи. Положительная обратная связь усиливает управляющее воздействие, позволяет управлять значительными потоками энергии, потребляя незначительные энергетические ресурсы. Примером может служить увеличение скорости образования тромбина при появлении некоторого его количества на начальных этапах коагуляционного гемостаза. Отрицательная обратная связь ослабляет управляющее воздействие, уменьшает влияние возмущающих факторов на работу управляющих объектов, способствует возвращению измененного показателя к стационарному уровню. Например, информация о степени натяжения сухожилия скелетной мышцы, поступающая в центр управления функций этой мышцы от рецепторов Гольджи, ослабляет степень возбуждения центра, чем предохраняет мышцу от развития избыточной силы сокращения. Отрицательные обратные связи повышают устойчивость биологической системы — способность возвращаться к первоначальному состоянию после прекращения возмущающего воздействия. В организме обратные связи построены по принципу иерархии (подчиненности) и дублирования. Например, саморегуляция работы сердечной мышцы предусматривает наличие обратных связей от рецепторов самой сердечной мышцы, рецепторных полей магистральных сосудов, рецепторов, контролирующих уровень тканевого дыхания, и др. Гомеостаз организма в целом обеспечивается согласованной содружественной работой различных органов и систем, функции которых поддерживаются на относительно постоянном уровне процессами саморегуляции. 3 Во-вторых, сигналы, поступающие по управляющим каналам нервной системы передаются в местах окончания нервных проводников в виде химических молекул-посредников, поступающих в микроокружение клеток, т.е. гуморальным путем. А специализированные для гуморальной регуляции железы внутренней секреции управляются нервной системой. Таким образом, следует говорить о единой нейро-гуморальной системе регуляции физиологических функций. Гуморальная регуляция, координация физиологических и биохимических процессов, осуществляемая через жидкие среды организма (кровь, лимфу, тканевую жидкость) с помощью биологически активных веществ (метаболиты, гормоны, гормоноиды ионы), выделяемых клетками, органами и тканями в процессе их жизнедеятельности. У высокоразвитых животных и человека Г. р. подчинена нервной регуляции и составляет совместно с ней единую систему нейрогуморальной регуляции. Продукты обмена веществ действуют не только непосредственно на эффекторные органы, но и на окончания чувствительных нервов (хеморецепторы) и нервные центры, вызывая гуморальным или рефлекторным путём те или иные реакции. Так, если в результате усиленной физической работы в крови увеличивается содержание CO2, то это вызывает возбуждение дыхательного центра, что ведёт к усилению дыхания и выведению из организма излишков CO2. Гуморальная передача нервных импульсов химическими веществами, т. н. медиаторами, осуществляется в центральной и периферической нервной системе. Наряду с гормонами важнуюроль в Г. р. играют продукты межуточного обмена. Биологическую активность жидких сред организма обусловлена соотношением содержания катехоламинов (адреналина и норадреналина, их предшественников и продуктов распада), ацетилхолина, гистамина, серотонина и др. аминов биогенных, некоторых полипептидов и аминокислот, состоянием ферментных систем, присутствием активаторов и ингибиторов, содержанием ионов, микроэлементов и т. д. 2 Рефлекторные реакции этого типа инициируются такими биологически важными стимулами, как пищевые, болевые раздражители. Определяющим на входе этих рефлекторных актов становятся не физико-химические свойства стимулов, а в первую очередь их биологическое значение. Интегративные безусловные рефлексы всегда носят целостный системный характер, включая достаточно выраженные соматические и вегетативные компоненты. Их реализация оказывается весьма пластичной, тесно связанной со многими сильно развитыми проприоцептивными обратными связями, обеспечивающими точную коррекцию выполняемого сложного поведенческого акта в соответствии с изменениями в состоянии организма. Пример такой реакции — ориентировочная реакция. Биологическое значение последней заключается в перестройке организма, которая обеспечивает оптимальную подготовку к восприятию и быстрому анализу нового неизвестного сигнала в целях организации рационального ответа. Интегративные безусловные рефлексы требуют для своей реализации надсегментарных механизмов нервно-рефлекторной регуляции поведения организма. Эти рефлексы означают переход от сравнительно простых безусловных рефлексов к поведенческим актам. Сложнейшие безусловные рефлексы (инстинкты) представляют собой видовые стереотипы поведения, организующиеся на базе интегративных рефлексов по генетически заданной программе. В качестве запускающих стереотипные поведенческие реакции раздражений выступают стимулы, имеющие отношение к питанию, защите, размножению и другим биологически важным потребностям организма. Сложнейшие безусловные рефлексы образованы последовательными интегративными реакциями, построенными таким образом, что завершение одной реакции становится началом следующей. Адаптивность инстинктов усиливается благодаря наслоению на сложнейшие безусловные рефлексы условных, приобретаемых на ранних этапах онтогенеза. Нервный субстрат, ответственный за физиологические механизмы инстинктивного поведения, представляет иерархическую систему соподчиненных центров интегративных, координационных и элементарных безусловных рефлексов. Жесткая предопределенность инстинктивных реакций обусловлена этапной последовательностью актов инстинктивного поведения, ограничивающей сферу функционирования обратной связи от последующего этапа к предыдущему, уже реализованному. Инстинктивные реакции отражают исторический опыт вида. В субъективной сфере человека сложнейшие безусловные рефлексы проявляются в виде последовательных влечений и желаний, в сложной игре эмоций. Элементарные условные рефлексы проявляются в интегративных реакциях, вызываемых ранее индифферентными раздражителями, приобретающими сигнальное значение в результате жизненного опыта или подкрепления их безусловными стимулами (сигналами), имеющими биологическое значение. Основным принципиальным отличием этой категории рефлекторных реакций является то, что они образуются в процессе индивидуальной жизни. Условнорефлекторные реакции образуются, усложняются, видоизменяются на протяжении всей жизни; наиболее простые из них формируются в раннем возрасте. Нервным субстратом, отвечающим за осуществление условнорефлекторных реакций, является филогенетически наиболее молодая структура головного мозга — кора больших полушарий. Многоканальность и взаимозаменяемость путей реализации условнорефлекторного механизма лежат в основе высокой пластичности и надежности условнорефлекторных реакций. В системе рефлекторных реакций появление условного рефлекса означает качественно новый скачок в приспособительном поведении высших животных и человека. Условнорефлекторные реакции дают возможность организму заблаговременно отвечать на приближающиеся жизненно важные ситуации. В психической сфере деятельности человека условные рефлексы закладывают начало ассоциативному способу мышления. Вся нервная деятельность, как бы она не была сложна, складывается из рефлексов различной степени сложности, т.е. она является отраженной, вызванной внешним поводом, внешним толчком. Центральная нервная система работает по принципу рефлекса, отражения, по принципу стимул - реакция. Рефлекторный принцип нервной деятельности был открыт великим французским философом, физиком и математиком Рене Декартом более 300 лет назад. Развитие рефлекторная теория получила в фундументальных трудах русских ученых И.М. Сеченова и И.П. Павлова. Время, прошедшее от момента нанесения раздражения до ответа на него, называется временем рефлекса. Оно слагается из времени, необходимого для возбуждения рецепторов, проведения возбуждения по чувствительным волокнам, по центральной нервной системе, по двигательным волокнам, и, наконец, латентного (скрытого) периода возбуждения рабочего органа. Большая часть времени уходит на проведение возбуждения через нервные центры - центральное время рефлекса. Время рефлекса зависит от силы раздражения и от возбудимости центральной нервной системы. При сильном раздражении оно короче, при снижении возбудимости, вызванном, например, утомлением, время рефлекса увеличивается, при повышении возбудимости значительно уменьшается. Каждый рефлекс можно вызвать только с определенного рецептивного поля. Например, рефлекс сосания возникает при раздражении губ ребенка; рефлекс сужения зрачка - при ярком свете (освещении сетчатки глаза) и т.д. Каждый рефлекс имеет свою локализацию (место расположения) в центральной нервной системе, т.е. тот ее участок, который необходим для его осуществления. Например, центр расширения зрачка - в верхнем грудном сегменте спинного мозга. При разрушении соответствующего отдела рефлекс отсутствует. Только при целостности центральной нервной системы сохраняется все совершенство нервной деятельности. Нервным центром называется совокупность нервных клеток, расположенных в различных отделах центральной нервной системы, необходимая для осуществления рефлекса и достаточная для его регуляции. 6. Раздражимость/возбудимость, виды. В ходе эволюции у многоклеточных организмов сформировалась специальная система, обеспечивающая восприятие, передачу, хранение, переработку и воспроизведение информации, которая закодирована в электрических сигналах. Чтобы понять природу биоэлектрических явлений, т.е. сигналов, при помощи которых нервная система осуществляет передачу информации, необходимо прежде всего рассмотреть некоторые стороны общей физиологии возбудимых тканей, к которым относятся нервная, мышечная и железистая ткани. Все живые клетки обладают раздражимостью, т.е. способностью реагировать на различные стимулы и переходить из состояния физиологического покоя в состояние активности. Этот процесс сопровождается изменением обмена веществ, электрического потенциала, а высокодифференцированные ткани (нервная, мышечная, железистая) осуществляющие специфические функции - проведение нервного импульса, сокращение или выделение секрета. Переход клеток из состояния физиологического покоя в состояние активности осуществляется под влиянием определенных факторов внешней или внутренней среды, так называемых раздражителей. 8. Строение и классификация синапсов. Синапсами называются контакты, которые устанавливают нейроны как самостоятельные образования. Синапс представляет собой сложную структуру и состоит из пресинаптической части (окончание аксона, передающее сигнал), синаптической щели и постсинаптической части (структура воспринимающей клетки). Классификация синапсов. Синапсы классифицируются по местоположению, характеру действия, способу передачи сигнала. По местоположению выделяют нервно-мышечные синапсы и нейронейрональные, последние в свою очередь делятся на аксосоматические, аксоаксональные, аксодендритические, дендросоматические. По характеру действия на воспринимающую структуру синапсы могут быть возбуждающими и тормозящими. По способу передачи сигнала синапсы делятся на электрические, химические, смешанные. Взаимодействие нейронов между собой (и с эффекторными органами) происходит через специальные образования - синапсу (греч. - контакт). Они образуются концевыми разветвлениями нейрона на теле или отростках другого нейрона. Чем больше синапсов во нервной клетке, тем больше она воспринимает различных раздражений и, следовательно, шире сфера влияний на ее деятельность и возможность участия в разнообразных реакциях организма. Особенно много синапсов в высших отделах нервной системы и именно у нейронов с наиболее сложными функциями. В структуре синапса различают три элемента: 1)пресинаптическую мембрану, образованную утолщением мембраны конечной веточки аксона; 2)синаптическую щель между нейронами; 3)постсинаптическую мембрану — утолщение прилегающей поверхности следующего нейрона. В большинстве случаев передача влияния одного нейрона на другой осуществляется химическим путем. В пресинаптической части контакта имеются синоптические пузырьки, которые содержат специальные вещества — медиаторы или посредники. Ими могут быть ацетилхолин (в некоторых клетках спинного мозга, в вегетативных узлах), норадреналин (в окончаниях симпатических нервных волокон, в гипоталамусе), некоторые аминокислоты и др. Приходящие в окончания аксона нервные импульсы вызывают опорожнение синаптических пузырьков и выведение медиатора в синаптическую щель. По характеру воздействия на последующую нервную клетку различают возбуждающие и тормозящие синапсов. В возбуждающих синапсах медиаторы (например ацетилхолин) связываются со специфическими макромолекулами постсинаптической мембраны и вызывают ее деполяризацию. При этом регистрируется небольшое и кратковременное (около 1 мс) колебание мембранного потенциала в сторону деполяризации или возбуждающий постсинаптический потенциал (ВПСП).Для возбуждения нейрона необходимо, чтобы ВПСП достиг порогового уровня..). 7 Возбудимость, методы её оценки. Потенциал действия (нервный импульс). Дальнейшее развитие эти эксперименты получили в опытах Гельмгольца, который в 1850 году измерил скорость нервного импульса у лягушки (40м/с), затем была измерена скорость нервного импульса у человека (120м/с). Для передачи информации от клетки к клетке нейроны используют электрические (в синапсах – химические) сигналы. Расстояние передачи нервного импульса может быть очень большим Электрические сигналы нервных клеток можно разделить на два класса: Локальные градуальные потенциалы. Возникают в рецепторных клетках при действии какого-либо раздражителя, а также возникают в постсинаптических клетках. Величина их потенциала зависит от силы раздражителя (градуальные). Эти потенциалы привязаны к месту возникновения и не передаются на большие расстояния (локальные). Потенциалы действия. Вызываются локальными потенциалами, в отличие от которых быстро распространяются на большие расстояния и фиксированы по амплитуде и длительности. Электрические сигналы идентичны во всех нервных клетках органима независимо от того, обеспечивают ли они процесс восприятия, или обеспечивают движение, или передают сигнал внутри ЦНС. Это универальный механизм, используемый для передачи информации в живых организмах. Потенциал действия – это быстрое колебание мембранного потенциала. При достижении критического уровня депояризации локальный потенциал переходит в потенциал действия. Пик (spike)Следовые потенциалы. Фазы потенциала действия: Деполяризация. Реполяризация. Фаза инверсии заряда (перелёт, overshoot). Отрицательный следовой потенциал (следовая гиперполяризация). Следовая деполяризация. Существование следовых поетнцалов отмечается в мотонейронах спинного мозга. Способность к генерации потенциала действия имеют также мышечные клетки. Ионные механизмы потенциала действия. В мембране нейрона имеются потенциал-зависимые натриевые каналы, которые открываются при изменении заряда мембраны. При деполяризации мембраны происходит открытие натриевых каналов и увеличение натриевой проводимости. Вследствие этого увеличивается вход натрия внутрь клетки, который в свою очередь увеличивает деполяризацию мембраны. Это процесс с положительной обратной связью (регенеративный, самоусиливающийся). Примером такого процесса может служить взрыв пороха. Если открыто достаточное количество натриевых каналов для запуска процесса, то он дальше развивается самостоятельно и идёт до конца, генерируя потенциал действия. . Механизм проведения нервного импульса по безмиелиновым и миелиновым волокнам. Нервные волокна представляют собой отростки нервных клеток (дендриты, аксоны), покрытые оболочками. При этом отросток в каждом нервном волокне является осевым цилиндром, а окружающие его нейролеммоциты (шванновские клетки), относящиеся к нейроглии, образуют оболочку волокна - нейролемму. С учетом строения оболочек нервные волокна подразделяют на безмякотные (безмиелиновые) и мякотные (миелиновые). Безмиелиновые нервные волокна имеются, главным образом, у вегетативных нейронов. Осевой цилиндр как бы прогибает плазматическую мембрану (оболочку) нейролеммоцита, которая смыкается над ним. Сдвоенная над осевым цилиндром мембрана нейролеммоцита получила название мезаксон. Под шванновской клеткой остается узкое пространство (10-15 нм), содержащее тканевую жидкость, участвующую в проведении нервных импульсов. Один нейролеммоцит окутывает несколько (до 5-20) аксонов нервных клеток. Оболочку отростка нервной клетки образуют многие шванновские клетки, располагающиеся последовательно одна за другой. Миелиновые нервные волокна толстые, они имеют толщину до 20 мкм. Эти волокна образованы довольно толстым аксоном клетки - осевым цилиндром. Вокруг аксона имеется оболочка, состоящая из двух слоев. подробнее в файле
|